

VarioCookingCenter®. Multifunctional appliances for boiling, frying and deep-frying.

An introduction.

Contents.

1	Boiling, frying and deep-frying. Technology compared.	4
2	The three main applications with a multifunctional cooking appliance.	8
3	The functions of multifunctional cooking appliances.	11
	Temperature and cooking time.	12
	Perfect temperature regulation with a modern heating system.	13
4	Preparation with conventional appliances compared to multifunctional cooking appliances.	15
	Boiling.	
	Pan-frying.	
	Deep-frying.	
	Braising.	
	Pressure cooking.	
	Confit.	
	Sous-vide cooking.	
5	Healthy nutrition and multifunctional cooking appliances.	23
6	Intelligent multifunctional cooking appliances and their benefits.	27
7	The difference between a program and an intelligent process.	32
8	Saving cooking processes and the benefits.	34
9	24 hours with an intelligent multifunctional cooking appliance.	38

Boiling, frying and deep-frying. Technology compared.

The cooking methods of boiling, pan-frying and deep-frying are used daily in almost all kitchens. The equipment required for this, such as pots, pans, tilting pans, boiling pans, pressure braising pans and deep-fat fryers are conventional cooking appliances that have hardly seen any technical progress until now. These appliances use a lot of resources. This means that they need long preheating times and require constant monitoring by the chef in order to ensure the cooking result. Conventional technology is now replaced with a multifunctional cooking appliance which combines multiple cooking methods in a single appliance (see table). This also saves space and energy.

Definition of cooking method	Conventional technology	Multifunctional technology
Boiling Cooking food in liquid at temperatures up to boiling point		
Pressure cooking Boiling at temperatures above boiling point ¹		
Pan-frying Cooking food using dry contact heat at high temperatures		
Deep-frying Cooking food in oil at high temperatures		

What do we mean by multifunctional cooking technology?

Multifunctional cooking appliances replace individual appliances such as pots, pans, tilting pans, boiling pans, deep-fat fryers, pressure braising pans, sous-vide cookers, pasta boilers etc.

What benefits do multifunctional cooking appliances offer?

The fact that many cooking methods can be undertaken in a single appliance means that fewer appliances need to be purchased and that less space in the kitchen is required.

A large number of different cooking appliances also usually means different modes of operation. The complexity also entails a significant risk in daily food production. A multifunctional cooking appliance can reduce this risk. Once one appliance has been mastered, all appliances have been mastered.

Multifunctional cooking appliances also increase flexibility for chefs, since they are not restricted to a single cooking method. So, for example, chefs can decide for themselves whether they want to boil, pan fry, steam, pressure cook or even deep fry potatoes, because it is all possible in a single appliance.

While when using conventional cooking appliances, food production can usually only take place in parallel, multifunctional cooking appliances offer two solutions. For example, if a boiling pan is replaced by a multifunctional cooking appliance, the same production tasks can be undertaken. In addition, because they are often quicker, other methods such as braising, pressure cooking, pan-frying or even deep-frying can also be done.

This accelerates production and eliminates bottlenecks. Another option is a reversal in production design. Whereby conventional appliances are almost completely replaced in kitchens with multifunctional cooking appliances, or they are used to handle production peaks.

¹ Boiling point: Temperature at which a substance (e.g. water) changes from a liquid to a gaseous state (e.g. steam)

Before	Menu 1 (100 portions)	Menu 2 (40 portions)	Menu 3 (60 portions)	Additional production
Beef roulade	20 kg	Tofu and vegetable skewers 80	Chicken casserole 9 kg	Vegetable soup
Potatoes	20 kg	Pasta 2.4 kg	Rice 3.6 kg	Tray cake
Red cabbage with apple 20 kg	Tomato sauce 3.2 l			Pudding

Production plan for conventionally equipped kitchen

Production plan for conventionally equipped kitchen

After

Production plan for a kitchen equipped with multifunctional cooking appliances

Menu 1 (100 portions)	Menu 2 (40 portions)	Menu 3 (60 portions)	Additional production
Beef roulade	20 kg	Tofu and vegetable skewers 80	Chicken casserole 9 kg
Potatoes	20 kg	Pasta 2.4 kg	Vegetable soup
Red cabbage with apple 20 kg	Tomato sauce 3.2 l		Tray cake

*Multifunctional cooking appliance

Multifunctional cooking appliances are equipped with different heating technologies.

What are the benefits of modern (heating) technology?

Modern (heating) technology offers uniform, pinpoint heat distribution through powerful heating elements as well as intelligent temperature regulation.

For the chef, this provides the following benefits:

- > Extremely short heating times (of around 2 min for pan-frying at 200 °C)
- > Increased productivity as a result
- > Fast cooling
- > Product do not stick or boil over
- > Perfect and reproducible cooking results
- > Efficient working and time gains as well as resource savings (electricity, water, raw materials)
- > Improved food quality
- > No need to constantly monitor cooking process

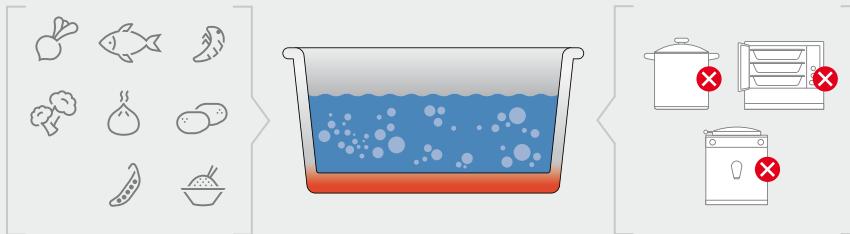
Conventional (heating) technologies are characterised by slow reactions, such as long heating and cooling as well as high power consumption. This unnecessarily extends production times and increases the work pressure in the kitchen, which can be reflected in work quality.

Multifunctional cooking technology and its significance for the environment.

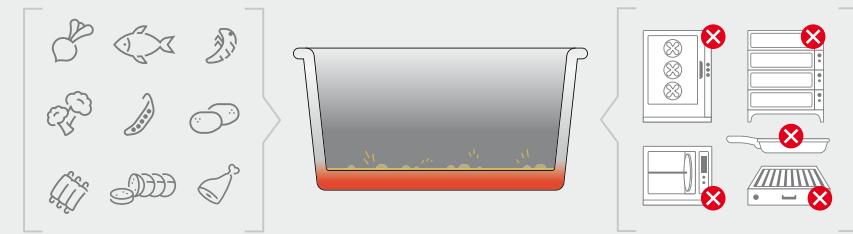
Requirements in terms of more efficient use of resources in day-to-day kitchen routines are continually increasing. From the perspective of sustainability, kitchen processes need to become more efficient. This means that the space requirement, water and energy consumption as well as the use of raw materials must be reduced. In parallel, cost pressure and the demands of guests are increasing.

Modern (heating) technologies in combination with multifunctional cooking appliances is the best way to meet these requirements.

The three main applications with a multifunctional cooking appliance.



Boiling temperature: from 30 °C to boiling temperature



Pan-frying temperature: from 30°C to 250 °C

1

2

Functions:

A container is heated from the outside, whereby a liquid (and the food in that liquid) is heated up

Supporting functions:

- > Raising and lowering mechanism (automatic lowering and raising of boiling baskets into/out of the cooking liquid)
- > Integrated water drain
- > Water inlet
- > Precise temperature measurement
 - of the liquid
 - of the food by the core temperature probe
- > Timer for portion baskets

Preparation methods:

- > Blanching + pressure cooking (< boiling temperature)
- > Poaching (70–90 °C)
- > Sous-vide (30–90 °C)

Benefits of modern technology:

- > Reduced preheat and cooling time
- > Fast reheating time for high food quality
- > Different cooking media possible within a single appliance
- > Time saving due to less monitoring
- > Lower water consumption

Food such as fish, meat, poultry, eggs, vegetables, pasta and potatoes as well as milk and desserts, soups and sauces are boiled.

Multifunctional cooking appliances can therefore replace the following appliances:

- > Steamers
- > Boiling pot/saucepans/kettles
- > Pasta saucepan
- > Sous-vide cooker
- > Pressure cooker

Functions:

> A frying surface is heated from below and the food to be cooked is placed directly on top

Supporting functions:

- > Integrated water drain
- > Water supply for deglazing
- > Precise temperature measurement
 - of the frying surface
 - of the food by the core temperature probe
- > Timer for individual areas in the cooking pan

Preparation methods:

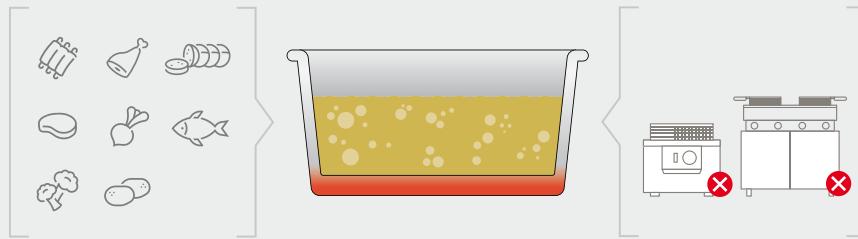
- > Pan-frying
- > Braising

Benefits of modern technology:

- > Reduced preheat and cooling time

- > Precise temperature regulation for best cooking results and product quality
- > Searing large quantities without any loss of power (reduced moisture loss when searing meat)

- > Time saving by searing large quantities without any temperature loss
- > Uniform heat distribution


Food such as fish, meat, poultry, eggs, vegetables, side dishes and desserts can be fried in this way

Multifunctional cooking appliances can therefore replace the following appliances:

- > Convection oven
- > Plancha/griddle plate
- > Tilting frying pan
- > Frying pan
- > Wok

Deep-frying temperature: 30 to 180°C

Functions:

- > A container is heated from the outside, and the fat in which the food is cooked in that container heats up

Supporting functions:

- > Raising and lowering mechanism (automatic lowering and raising of deep-frying baskets into/out of the fat)
- > Precise temperature measurement
 - of the fat
 - of the food by the core temperature probe
- > Timer for portion baskets

Preparation methods:

- > Deep-frying (140-180 °C)
- > Blanching (< 140 °C)
- > Confit (40-90 °C)

Benefits of modern technology:

- > Fast (re)heating times
- > Best cooking results thanks to maximum crispiness of vegetables, poultry, meat and fish
- > Longer shelf life of oil (gentle heating due to large heat exchange surface)
- > Pinpoint temperature regulation for best cooking results

Food such as fish, meat, poultry, vegetables and potatoes as well as desserts and baked goods are deep-fried, confit or blanched.

Multifunctional cooking appliances can therefore replace the following appliances:

- > Deep-fat fryer
- > High performance deep-fat fryer

The functions of multifunctional cooking appliances.

Chefs always want to impress their customers with perfectly cooked foods. To do this, they need not only knowledge and experience, but also the supporting technology.

Boiling is made much simpler by using modern cooking technologies. The important preheating is automatically started as soon as the appliance is switched on and the temperature can be set with extreme precision, unless an automatic cooking process is selected.

These intelligent cooking processes are the modern cook's assistant, which is available to the chef on demand in some multifunctional cooking appliances. This can be used to automatically regulate certain cooking processes.

Take boiling milk as an example, where the risk of boiling over is avoided with the help of an automatic cooking process.

The sensitive and accurate temperature regulation prevents products from sticking or burning.

With the precision and reliability of such intelligent cooking processes, the chef gains crucial time for other tasks.

On the following pages, we will look at the basic settings of a multifunctional cooking appliance.

Temperature and cooking time.

The basic questions:

What temperature must be set? How much time is required for cooking?

What do the appliance settings depend on?

Risotto	= experience
Pasta	= experience, package instructions
Pan-fried dishes	= experience
Sous-vide	= experience

When using conventional pots, pans and other cooking appliances, the chef needs a wide repertoire of experience and a lot of practice to estimate the temperature and time exactly.

A multifunctional cooking appliance now has programs or saved intelligent and self-regulating cooking processes. These allow the chef to deliver consistently high cooking results.

Because in day-to-day kitchen routines, the production quantities, unit sizes and quality of products vary greatly, the temperature and time often need to be adjusted. The modern multifunctional cooking appliance now has the ability to make these individual adjustments automatically (see also chapter 7).

If you want to ensure consistent quality in all production quantities and unit sizes, additional monitoring of the core temperature of meat and fish is an advantage. Also the chef needs to have some experience in order to know which core temperature leads to which cooking result. This takes a little practice in the beginning. Once enough experience has been gained, it becomes so easy to cook a perfect steak, for example. For this reason, the core temperature probe is an important aid to ensure cooking quality.

Perfect temperature regulation with a modern heating system.

Multifunctional cooking appliances are heated by different heating systems:


Modern heating technology is more efficient with a top efficiency rates. Precise regulation, uniform heat distribution and high power have a positive impact on the cooking result.

Conventional heating systems with thin bases become hot relatively quickly, but the temperature is not distributed uniformly.

Conventional heating systems with a thick base are sluggish and heat up more slowly, but have a more uniform temperature.

Preparation with conventional appliances compared to multifunctional cooking appliances.

The following topics were explained on previous pages:

- > Fast heating up and cooling
- > The associated time factor
- > The precise regulation and uniformity of temperatures and their significance.

In summary, using modern multifunctional cooking appliances provides the chef with the following significant production benefits:

- > Maximum precision in cooking
- > Higher production capacity
- > High time gains

Benefits of the modern heating system

Today's generation of multifunctional cooking appliances, which are equipped with modern heating technology, make kitchen work much easier:

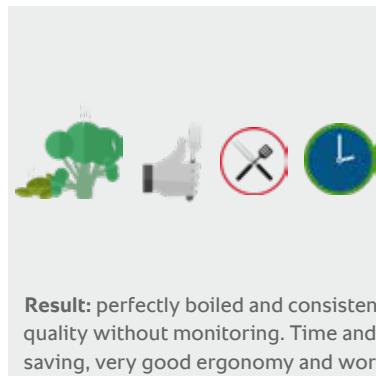
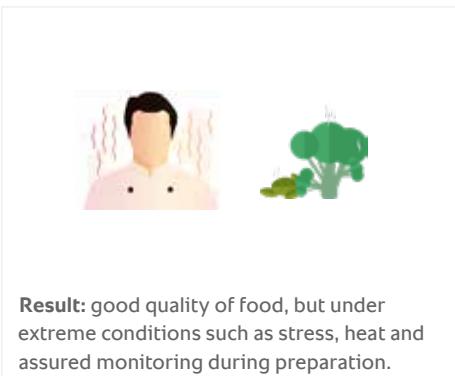
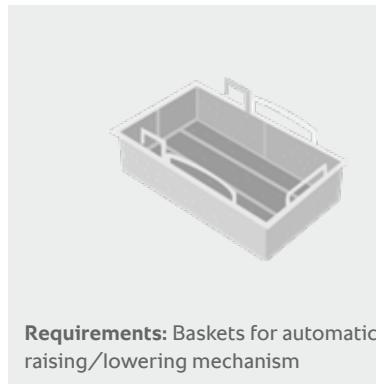
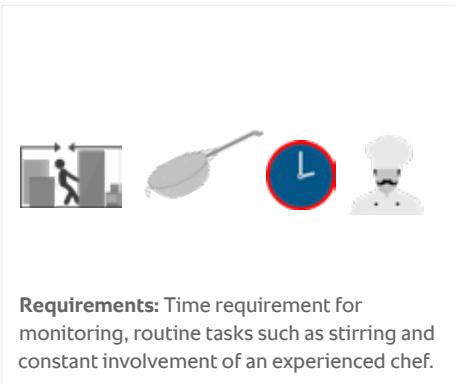
- > No sticking or burning on the pan base
- > Cleaning in seconds
- > Shorter production times
- > Shorter preheat and cooling times
- > High searing capacity, even with large batches
- > Diverse preparation options

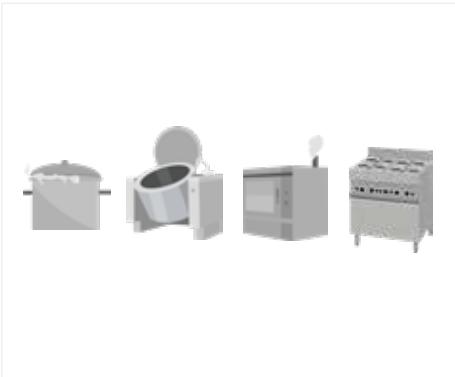
The range of benefits offered by multifunctional cooking appliances leads to a rapid spread of these appliance types in kitchens.

As a rule, we distinguish between the following common preparation methods:

- > Boiling
- > Frying/pan-frying
- > Deep-frying
- > Braising
- > Pressure cooking
- > Confit
- > Sous-vide

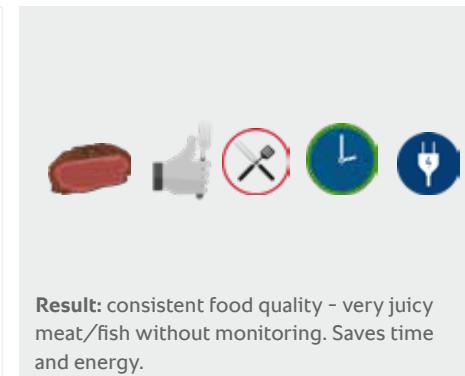
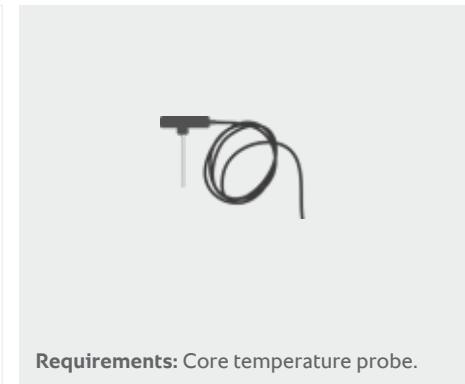
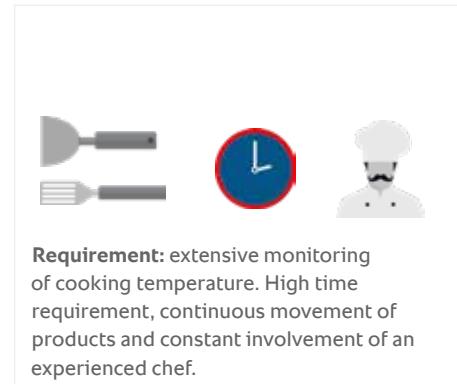
The low-resource use of a multifunctional cooking appliance combines most classic cooking methods and replaces conventional appliances completely.

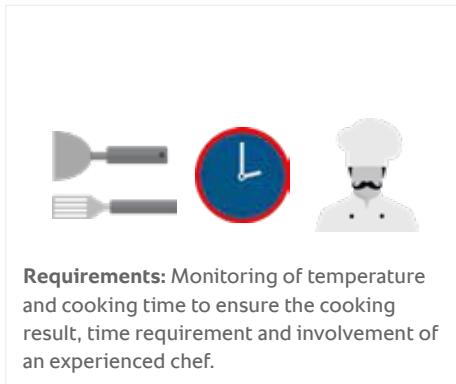

The ergonomy and ease of use make working with multifunctional cooking appliances significantly easier, which is also thanks to the appropriate accessory solutions.

Below you will find an overview of the most common cooking methods, each compared to conventional methods.

Even after the first step with a multifunctional cooking appliance, it becomes clear: Using the integrated and modern cooking intelligence, the chef benefits from optimised product management as well as excellent food quality.

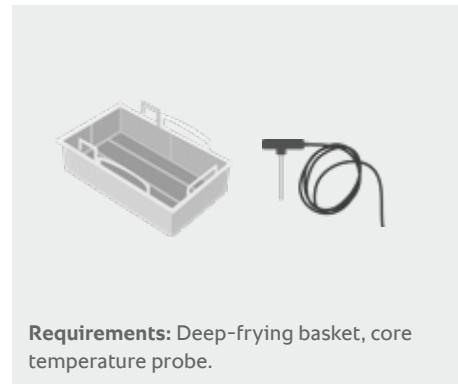



Boiling.

Conventional vs. multifunctional cooking appliances.



Pan-frying.

Conventional vs. multifunctional cooking appliances.

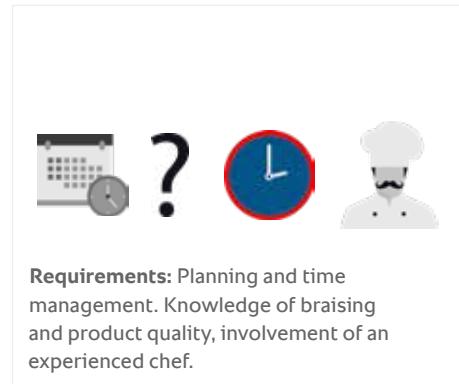


Deep-frying.

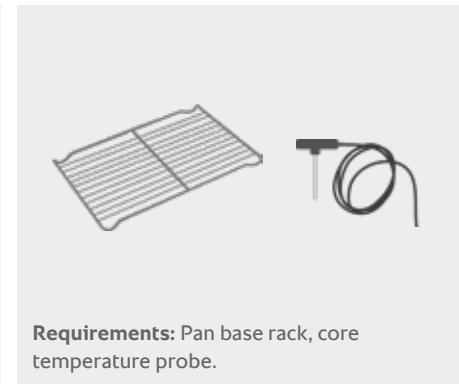
Conventional vs. multifunctional cooking appliances.

Requirements: Monitoring of temperature and cooking time to ensure the cooking result, time requirement and involvement of an experienced chef.

Requirements: Deep-frying basket, core temperature probe.

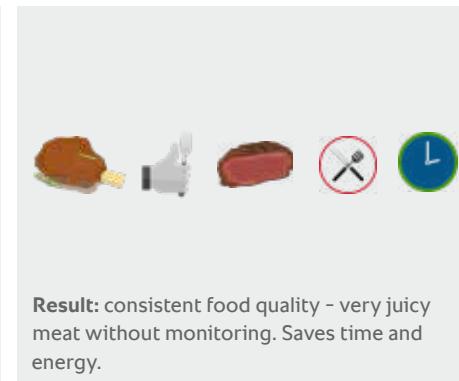


Result: consistent food quality, but under extreme conditions such as stress, heat and assured monitoring during preparation.

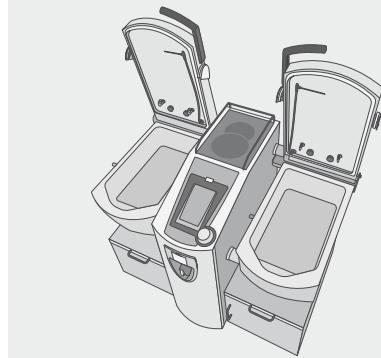

Result: consistent food quality - easy to use thanks to raising and lowering mechanism.

Braising.


Conventional vs. multifunctional cooking appliances.


Requirements: Planning and time management. Knowledge of braising and product quality, involvement of an experienced chef.

Requirements: Pan base rack, core temperature probe.


Result: consistent food quality, but under extreme conditions such as stress, heat and assured monitoring during preparation.

Result: consistent food quality - very juicy meat without monitoring. Saves time and energy.

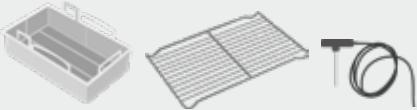
Pressure cooking.

Conventional vs. multifunctional cooking appliances.


Requirements: Temperature regulation, monitoring of pressure build up and reduction, cooking temperature control. Time requirement and an experienced chef.

Result: boiled food with different cooking results.

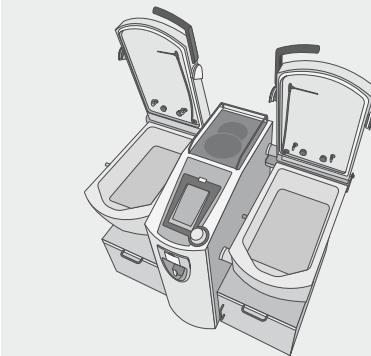
Confit.


Conventional vs. multifunctional cooking appliances.

Requirements: Temperature regulation, cooking temperature control. Time requirement and an experienced chef.

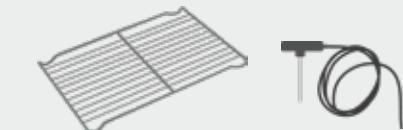
Requirements: Pan base rack, sieve

Requirements: Boiling basket, pan base rack, sieve


Result: consistent food quality, but under extreme conditions such as stress, heat and assured monitoring during preparation.

Result: consistent food quality without monitoring, time-saving

Sous-vide cooking.


Conventional vs. multifunctional cooking appliances.

Requirements: Knowledge of sous-vide, constant monitoring and involvement of an experienced chef.

Result: fluctuating quality of food, Large load sizes can lead to inconsistent results.

Requirements: pan base rack, temperature probe

Result: consistent food quality, even with large quantities without monitoring. Saves time and energy.

Healthy nutrition and multifunctional cooking appliances.

The intake and consumption of food not only serves to supply the body with important nutrients, but it is also always associated with enjoyment. The sensory properties and the biomarkers, or the vitamin and mineral content, of food are therefore very important qualities.

It is only through cooking that some foods develop their typical aromatic flavour and smell (e.g. Maillard reaction when searing) and change consistency. Some foods can only be eaten if heated, e.g. Kidney beans.

In order to retain as many nutrients as possible when heating food, it is important to choose the right cooking methods for the relevant food.

The choice of cooking method also has a crucial impact on the colour, shape, flavour and texture of vegetables, and on the sensory quality during consumption.

How do you evaluate food quality? The eight dimensions of food quality:

1. Nutritional quality

- > Energy content
- > Nutrient content
- > Wholesomeness
- > Digestibility
- > Hygiene properties
- > Range and quantity of prepared food covers the short, medium and long-term requirements in macro- and micronutrients in the body...

2nd Hygiene quality

Foods are free of harmful bacteria, viruses, toxins, chemicals and heavy metals.

3. Sensory quality

Food preparation corresponds to the personal culinary expectations in terms of smell, sound, appearance and texture.

4. Cultural/social quality

The range of food and the collective consumption builds identity, community, connects people and is appealing (business lunch, state banquet).

5. Environmental quality

- > Sustainable production, securing own production and the supply of subsequent generations, minimises emissions and waste.
- > Fair products, fair prices and wages.

6. Technological quality

The suitability value defines the technical/physical quality of the product and comprises the processing suitability or kitchen technology suitability of raw materials.

7. Economic quality

The product is suitable for marketing and for the operation of a profitable enterprise.

8. Psychological quality

Food conveys an appetizing impression and consists of ingredients generally associated with the dishes. It does not generate rejection or disgust.

Healthy and of the highest quality:

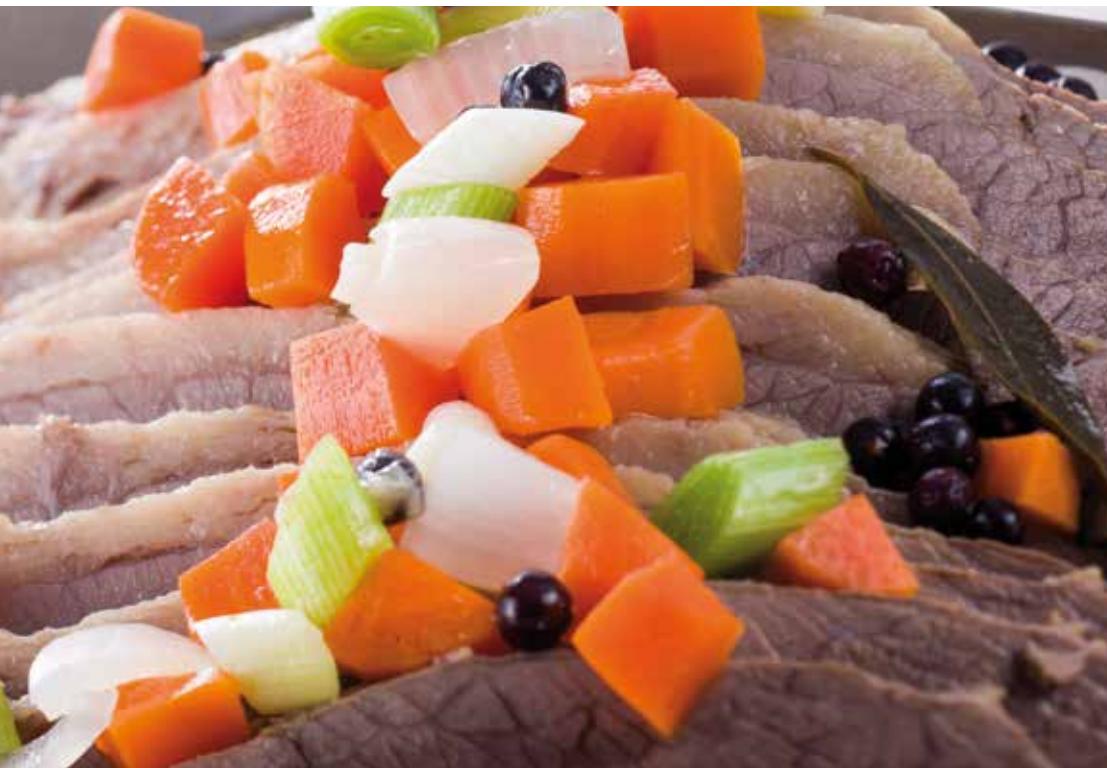
Healthy nutrition does not only depend on the high quality and nutritious aspect of food, but also on the food being prepared correctly.

How can the dimensions of food quality be positively influenced?

- > When pan-frying, food is browned in the pan with a little or without any fat and then cooked at a low temperature.
- > By low temperature cooking we mean the gentle slow cooking with minor temperature differences between the cooking liquid and the desired core temperature of the food. This becomes particularly succulent and also only produces a minor loss of weight.
- > With gentle braising, cheaper cuts of meat retain most of their weight, the collagen fibres are dissolved which makes the food much more easily digestible and succulent.
- > In steaming, food is cooked in a little water and it is the cooking method that protects nutrients the most, and is particularly suitable for vegetables.

> Pressure cooking means boiling or steaming in a firmly closed pot/appliance. Here, constant pressure and a smooth pressure build up and reduction must be ensured. This protects the cell structure for an optimal cooking result.

> Sous-vide cooking is cooking things like vegetables, fish or meat, which is vacuum-packed in a bag, in water. This prevents oxidation and the evaporation of volatile aromas. Due to the low temperature, the product is cooked gently and important nutrients are preserved.


The various cooking processes have both desired and undesired effects on the food.

The desired effects include the formation of roast flavours and aromas when cooking, which not only colour the food, but also increase its enjoyment value.

The undesired effects include the destruction of the cell structure (overcooking) in pressure cooking and in boiling, and the production of acrylamide with excessive searing and deep-frying for too long.

In addition, an exact core temperature control can have a positive effect on the quality of food: Using precise temperature regulation, products such as beef can reach the desired cooking level and colour.

High-risk types of meat (and poultry) are brought to a hygienically safe temperature cooked.

Other factors that can guarantee or improve the food quality:

- > Preservation of secondary plant substances
- > Preservation of minerals
- > Preservation of vitamins

Intelligent multifunctional cooking appliances and their benefits.

A modern multifunctional cooking appliance can significantly reduce stressful kitchen situations. Through the selection of preset cooking processes alone, the appliance recognises the product properties and adjusts the cooking process accordingly.

This minimises the monitoring requirements and the need for action by the chef.

Some manufacturers have been working on this idea for a number of years. They are continually developing and improving intelligent cooking processes.

This cooking intelligence, which is sometimes integrated, continuously controls temperatures in the pan and adjusts them where needed. This ensures that the food is always consistent and cooked according to the user's wishes.

What are productivity, speed and sustainability so important?

The long heating and cooling phases often result in unnecessarily protracted kitchen processes. The resulting lack of time is in turn reflected in the quality of the cooked product. The modern heating technologies of multifunctional cooking appliances work quicker and guarantee high quality.

The basic design requirements are the robustness of the appliances. Day-to-day kitchen routines also require high corrosion resistance and scratch-resistant surfaces of the pan base. The requirements in terms of temperature stability and excellent thermal conductivity are only a few examples of what heating system today have to handle.

Requirements in terms of more efficient use of resources in day-to-day kitchen routines are continually increasing. From the perspective of sustainability, kitchen processes also need to become more efficient. This also means that space requirements, water and energy consumption as well as the use of raw materials need to be reduced. In parallel, cost pressure and the demands of guests are increasing.

A study by Zurich University has shown that in kitchens where multifunctional appliances are used, up to 34 % less energy and 53 % less water are consumed.

The appliance reliably leads the user through every step of intelligent cooking:

Step 1

Select the group by pressing a symbol, e.g. Meat, side dishes or dessert.

Step 2

Select the cooking process, or the cooking method, e.g. boiling, frying, deep-frying, overnight cooking etc.

Step 3

Select any personal settings such as browning level, time and core temperature etc.

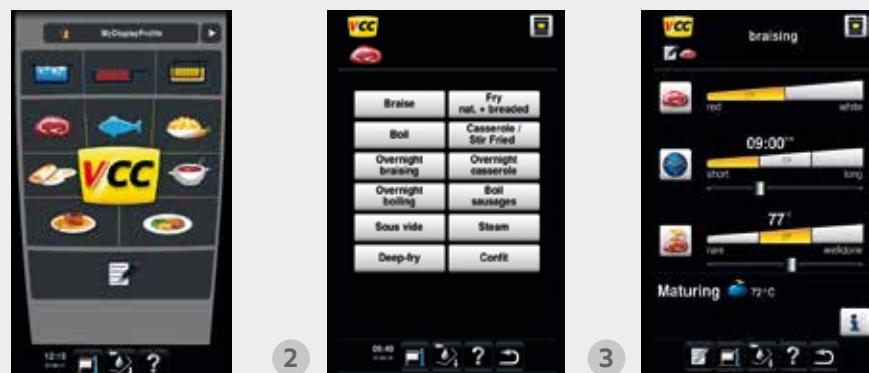
Depending on the food group and cooking method, the personal settings may vary, from the selection of the browning level of foods to the selection

of the desired cooking level (e.g. medium).

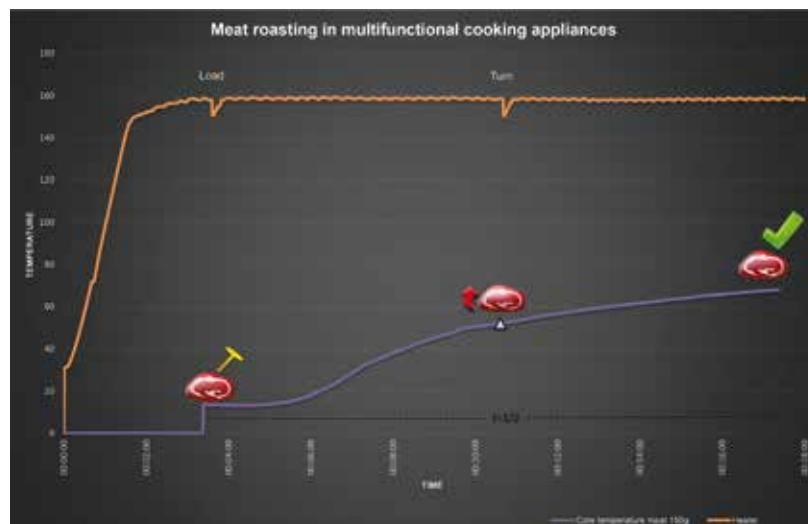
So, for example, in the "roast meat plain + breaded" cooking process, the height/ thickness of the food is selected: "thin" (less than 2 cm) or "thick" (more than 2 cm). The browning level can also be determined.

If the setting "thick" was previously selected, the cooking level must still be selected in the form of core temperature. If the setting "thin" was previously selected, the cooking time must be set.

For cooking processes that use the boil cooking method, the settings change accordingly. Here, the setting "time" can be set, but there is of course no browning level to set.

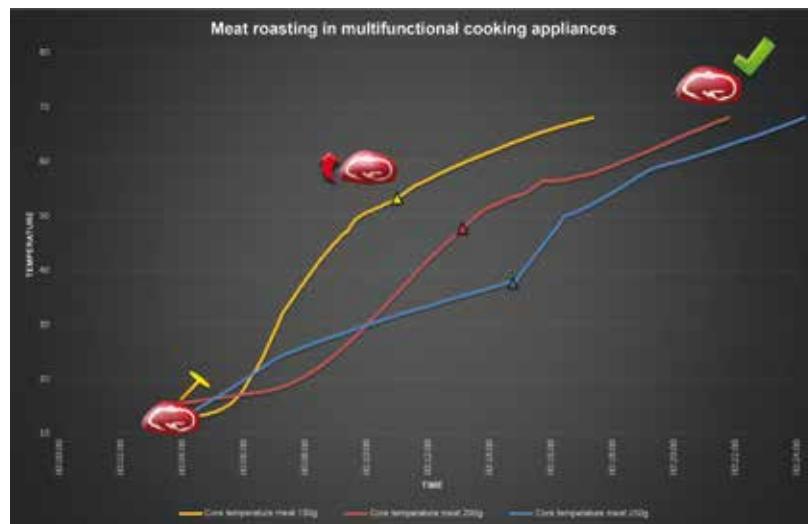

What happens in the pan?

- > Once the cooking processes are selected, the pan base or the cooking medium, e.g. water or oil, is preheated. The user is then asked to load the food into the pan.
- > Immediately upon loading, the intelligent multifunctional cooking appliances recognise the product properties.
- > The necessary cooking parameters to achieve the desired result are adjusted and the residual time determined.


Intelligent cooking is based on a complex temperature/-time-cooking medium-combination. In this combination, the intelligence controls the conditions based on real time data. The other cooking parameters are automatically adjusted.

The processes in the background seem complex, but allow for easy operation, which helps chefs prepare food to a very high quality without any stress.

Below you will find an example of an intelligent cooking process:

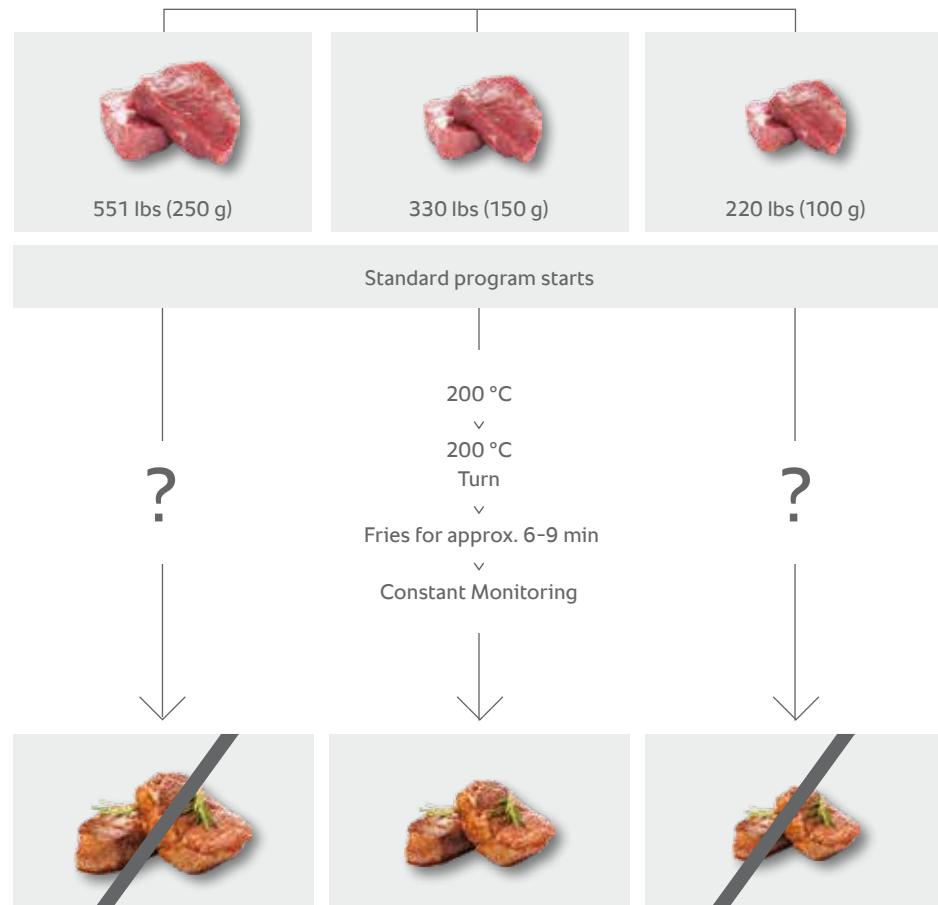

Explanation of an intelligent cooking process "roast meat plain + breaded"

Temperature of frying surface

Product temperature

- > The orange line in figure 1 shows the pan base temperature when frying.
- > In minute 3, the preheat phase is complete. The appliance asks the user to load. This prevents resources from being wasted unnecessarily.
- > The pan is now loaded with the food. Since the pan base has several heating elements, the appliance only heats the areas in which it registers a temperature loss.
- > From minute 3, the cooking intelligence begins, makes all the calculations based on the product composition and cooks the bottom side of the product.
- > By minute 10, the intelligent cooking appliance recognises the perfect time to turn the product and asks the user to turn the meat.

Temperature profile steak 150 g


Temperature profile steak 200 g

Temperature profile steak 250 g

- > After the confirmation, the steak is browned between the 10th and 14th Minute on the second side, until the desired core temperature is reached.
- > Once this is reached, both sides of the steak have the exact same browning.
- > Conclusion: The intelligent cooking processes automatically adjust the cooking times and temperatures to the relevant product. The cooking quality is reproducible and independent of the user's experience. Also, the setting is made for the user irrespective of the single or full load, since the temperature is regulated intelligently by the multifunctional cooking appliance and the cooking time is adjusted (see figure 2).

The difference between a program and an intelligent process.

Standard program

Process (cooking intelligence)

User must constantly monitor and adjust the browning and time.

Product weight is not considered.

Saving cooking processes and the benefits.

Today's generation of multifunctional cooking appliances are highly developed thermal cooking appliances for commercial kitchens.

They offer maximum benefits to those preparing hot food in large and commercial kitchens.

Saving cooking processes in multifunctional cooking appliances not only facilitate cooking but also provide consistently good results in daily workflows.

In general, programming multifunctional cooking appliances has the following benefits:

- > Daily monotonous tasks can be facilitated with little outlay.
- > The programs control the cooking process and as such provide the uniform results and consistent quality at all times.
- > Planning and standardisation of tasks can be defined in advance. Production can be adapted to the appliance and as such minimise set-up times.
- > The chef can concentrate on other important tasks. Production can be changed quickly and the appliance is ready to use at all times.

Saving processes allows the chef to standardise his preparation methods. The newly achieved quality in the preparation of braised dishes and stews can now be done by kitchen staff in his kitchen.

Example: Casserole preparation

A chef in a busy staff restaurant fries large quantities of meat every day for all kinds of casserole dishes. These are the most popular dish on his menu.

But this requires a lot of skill and time from the chef. There are long waiting times for heating up and then for searing, the chef has to always make sure that the meat always obtains the right colour. This is very strenuous.

Also, he cannot always estimate the demand exactly. So sometimes he could make too many portions.

Recently, the chef has been receiving many compliments on his dishes. Many customers have also given positive feedback on the new salad bar and the changed dessert presentation. A lot has improved in the last few weeks.

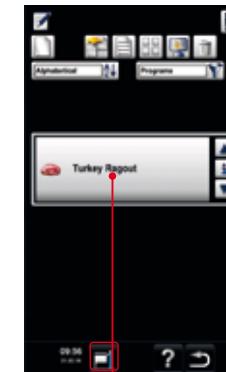
He proudly tells his customers how he managed to raise the quality. The fact that he no longer needs to hold food for long periods, such as the casserole, and that he has finally been able to deal with the salad bar he had long wanted to refresh. Due to his many years of experience in the kitchen, the chef quickly recognised how he had to organise himself to meet the requirements.

Using the intelligent cooking process for meat and the preparation of casserole and stews, he noticed the reduced heating up times immediately. The entire production time had reduced by more than half. This led him to decide to prepare the popular casserole only a few minutes before the start of service.

He now uses the time gained for a better dessert presentation. With his operations manager, he calculated the potential savings and together they decided to make the investment in the new salad bar.

Saving a cooking process during operation

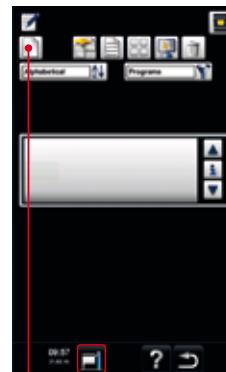
1 Select the category "meat".


2 During the cooking process, the "Program" button can be selected.

3 Enter the name and press the button with the green check mark to confirm.

4 Press the button "Program".

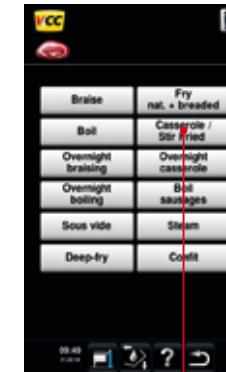
5 Search saved cooking processes by scrolling and start.



6 The saved cooking process will appear. Follow the instructions on the display.

Saving a cooking process using the save mode

1 Press the button "Program".


2 Press the button to create a new program.

3 Enter the name and press the button with the green check mark to confirm.

4 Select the category "meat".

5 Select "Casserole/Stir fried".

6 Set the parameters. Press the save button. Start again, see steps 4-6 above.

24 hours with an intelligent multifunctional cooking appliance

Left pan.

RATIONAL UK Limited
Unit 4 Titan Court, Laporte Way
Portenway Business Park
Luton, LU4 8EF
United Kingdom
Tel. +44 (0) 1582 480388
Fax +44 (0) 1582 485001
info@rational-online.co.uk
rational-online.com

80.02.555 - 80.02.556 - 80.02.557 - MDS/spis - 02/18 - englisch UK
We reserve the right to make technical changes in the interest of progress.

